

 Navigation

 	
 index

 	
 next |

 	djangocon-2012-notes 1.0.0 documentation

What the heck is this?

Notes, duh!

DjangoCon 2012

	Maintaining Your Sanity While Maintaining Your Open Source App

	Creating Dynamic Applications with Django and Backbone.js

	Designing Your Open-Source Project

	API Design Tips

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocon-2012-notes 1.0.0 documentation

Maintaining Your Sanity While Maintaining Your Open Source App

Mark Lavin

Packaging

	Use pip

	PEP 386

	List a description and __version__ number in __init__.py

Anti-Patterns

	giant README

	Docs which aren’t available online

	Use Sphinx and RTD

	Create docs before you think you need them

Things to Document

	Description of the project and its goals

	How to install, including requirements

	How to configure

	Release notes (not svn/git/hg logs)

Test Only Models

	Define models in tests.py and they’re only available to the test runner (already used by Django)

Testing

	Tox uses virtualenv to run a test matrix
* different Python versions
* different Django versions
* different DB backends

	You can have Tox build your Sphinx docs

	sul

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocon-2012-notes 1.0.0 documentation

Creating Dynamic Applications with Django and Backbone.js

Mjumbe Poe

Overview

	Backbone.js is cool, but sorry for all the JS

	Hijax: Accessibility is important

	Django REST Framework: it’s cool & we’re goinna make it cooler

	Templating in Django: Great but could be better.

Django Analogues

	
	Backbone has models, which are roughly like Django models

	
	No defined structure

	Also has form-like responsibilities, like validation

	
	Backbone has collections, which are like Django model managers or querysets

	
	Use them find/destroy/iterate through instances of models

	Backbone has events, which are similar to Django signals

	Backbone has views which are managers of portions of the page

	Backbone has routers which are similar to urlpatterns in Django

RESTful API

	Using a basic views.View view from Django REST Framework (not what I’d consider best practices -kl)

Hijax

	Plan for AJAX from the start, but implement at the end.

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	djangocon-2012-notes 1.0.0 documentation

Designing Your Open-Source Project

Bryan Veloso

The problem

	Designers are picky

	Designers are stubborn

	Designers are just like you (developers)

Pixel perfection === PEP8 perfection
Clarity through interface === clarity through documentation

A designer’s ability to code === nosql (things we bicker about)

Designers to developers: “make it work”
Developers to designers: “make it pretty”

Recruiting a Designer

	Pitch it on github

	Find them on Dribbble

	The hallway track

To My Fellow Designers

	Open source is experiential

	Open source is crucial

	Make yourself known

Hybrids

	Universal translators

	Knowledge exchanges

	Find them, train them

	Learn from hybrids

	Pair with hybrids

Working with Designers

	Time investment

	They need space

	Restrictions and boundaries

	Death to spec work

Design matters to Django so design should matter to you.

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	djangocon-2012-notes 1.0.0 documentation

API Design Tips

Daniel Lindsley

What?

	Not HTTP APIs

	Programmatic APIs

	
	Think libraries

	
	especially ones you hand off to other people…

Why?

	Think about how many times you’ve started with someone else’s library…

	Used it some…

	Then got really upset and frustrated

	Other people use your code all the time

	Nice APIs begets Happiness

	Happiness begets Recommendations

	Recommendations beget Users/Community

Philosophy

	
	You can’t make everyone happy by default

	
	You should still have sane defaults

	
	But more people will be happy if they can tweak it

	
	You can bet they’ll need to

	And most people will be happy if it’s easy to tweak

	
	No copy-paste should be needed

	
	Boilerplate sucks

	
	They shouldn’t have to constantly refer to the docs

	
	Especially not for things they use all the freaking time

	
	Good docs matter

	
	Saves you (support) & them (implementation) time. Everyone wins

	Real World use is the best sanity check

	
	Someone is going to something weird/insane with your code

	
	It’s inevitable, so design for it up front

Approaches on Design

	
	Common Methodologies:

	
	
	Bottom-up

	
	small components over time that eventually all work together in the final product

	
	Top-down

	
	build the ideal code at first, then writing the underlying code to make the ideal real

	
	Bottom-up sucks

	
	sure, you built little pieces that work

	
	but do they really work well together?

	
	likely not

	how is php formed

	
	Top-down feels better

	
	everything fits together right

	less duplication

	helps you to resist the urge to duct tape things together

	
	With some instant TDD, you get your tests started from the get-go

	
	fewer massive, painful refactories down the road

Things You Should Do

	
	Small components

	
	worked for UNIX, it’ll work for you

	
	Composition >= Inheritance

	
	Why do the work yourself when you can delegate?

	
	Reflection

	
	If data can flow one way, add the opposite

	
	Broad familiarity

	
	If it’s a similar task to something else they know, mimic that something else

	
	Narrow familiarity

	
	Call signatures matter

	
	Assume the worst

	
	Don’t code for just the easy case

Things You Should Not Do

	Stop at a low level

	Wildly different return values

	Useless “implementation” code

	If it’s difficult to test...

Django-specific Topics

	Pluggable backend all the things

	Internationalize all the things

	
	Dynamically loaded classe/code

	
	60% more error-handling, every time

	
	Declarative syntax

	
	Metaclasses: call your doctor if headaches last more than 4 hours

	Don’t metaclass all the things

	
	The ORM

	
	Love it or hate it, there’s some great learning opportunities there

	Decrease reliance on self

	
	Resist the urge to magic

	
	Be explicit first, then add shortcuts (which can be a little more magical)

In Conclusion

	Use the golden rule

	Consistency is key

	Plan for the worst & include sweet shortcuts

	Make something that you love and make it better

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	djangocon-2012-notes 1.0.0 documentation

Index

 Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		djangocon-2012-notes 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Kenneth Love.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

